COMPONENTS: (1) Cadmium oxide; CdO; [1306-19-0] (2) Water; H₂0; [7732-18-5] VARIABLES: Method of measuring the solubility of ORIGINAL MEASUREMENTS: Remy, H; Kuhlman, A. Z. anal. Chem. 1924, 65, 161-81. PREPARED BY: T. P. Dirkse

EXPERIMENTAL VALUES:

Cd0 in water at 20°C.

Solubility of CdO in water at 20°C.

Method	mol CdO dm ⁻³	mg CdO dm ⁻³	
specific conductance	3.90 x 10 ⁻⁵	5.00	
conductimetric titration	3.74×10^{-5}	4.80	

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Hot CdO is added to water and the mixture shaken. Two methods are used to calculate the solubility; (1) from the measured specific conductance and literature values for ionic conductances; (2) a conductimetric titration with $\rm H_2SO_4$. The point of the work is to note the contribution of dissolved $\rm CO_2$ to the conductance and how to correct for this.

SOURCE AND PURITY OF MATERIALS:

Reagent grade CdO and conductivity water were used.

ESTIMATED ERROR:

The temperature was not controlled but varied between 19 and 21°C. In the titration results, the uncertainty was 1% of the value reported.

REFERENCES:

COMPONENTS:

- (1) Cadmium hydroxide; Cd(OH)₂; [21041-95-2]
- (2) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Moeller, T.; Rhymer, P. W.; J. Phys. Chem. 1942, 46, 477-85.

VARIABLES:

PREPARED BY:

Composition of solvent at 25°C

T. P. Dirkse

EXPERIMENTAL VALUES:

Solubility product a of cadmium hydroxide at 25°C

COH-/CCd2+	рН	10 ¹⁴ K _s o
0.2	8.13	3.1
0.4	8.18	3.4
0.6	8.21	3.3
0.8	8.23	3.0
1.0	8.26	2.8
1.2	8.32	2.8
1.4	8.40	3.0
1.6	8.52	3.3

^a
$$K_{so} = C_{cd}^{2+} \cdot (a_{oH}^{-})^{2}$$

Salts other than $Cd(NO_3)_2$ were also used but $Cd(NO_3)_2$ gave the purest form of precipitated $Cd(OH)_2$.

In calculating K $_{\rm S}$ o the ionic product constant of water at 25°C was taken as 1 x 10 $^{-14}$.

Using the expression $S = \sqrt[3]{K_{SO}/4}$ the solubility of Cd(OH)₂ in water at 25°C is calculated to be 2 x 10⁻⁵ mol dm⁻³.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

10 mol of 0.0996 mol dm $^{-3}$ Cd(NO $_3$) $_2$ was diluted to 50 ml with water, thermostated at 25 \pm 0.5°C, stirred vigorously, and titrated with 0.1 mol dm $^{-3}$ carbonate-free NaOH or KOH. The pH of the solution was measured with a glass electrode. The values chosen were in the region where Cd(OH) $_2$ had precipitated from the solution.

SOURCE AND PURITY OF MATERIALS:

All materials were of reagent grade quality. The water was ${\rm CO_2}{\text{-}}{\rm free}$.

ESTIMATED ERROR:

No details are given about the reproducibility of any of the measurements.

REFERENCES:

COMPONENTS:

- (1) Cadmium hydroxide; Cd(OH)₂; [21041-95-2]
- (2) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Jenkins, S. H.; Keight, D. G.; Humphreys, R. E. Air Water Pollution 1964, 8, 537-56.

VARIABLES:

Effect of successive samples of CO₂-free distilled water at room temperature.

PREPARED BY:

T. P. Dirkse

EXPERIMENTAL VALUES: Solubility of Cd(OH) in distilled water.

pH of	temp,	Bottle pH of	1c _{Cd} ,	Bottle pH of	2c _{Cd} ,	Bottle pH of	$^{3}c_{Cd}$,
н ₂ 0	οс	soln	ppm	soln	ppm	soln	ppm
							
	22.0	9.28	0.81	9.00	1.03	9.10	1.11
8.70	20.4	9.30	0.79	9.40	0.66	9.39	1.02
9.00	17.0	9.30	0.54	9.28	1.26	9.35	0.99
7.78	18.0	9.32	0.87	9.43	0.79	9.40	0.79
8.92	19.0	9.32	0.79	9.35	0.79	9.40	0.66
8.67	20.0	9.25	0.38	9.39	0.41	9.38	0.38
8.00	18.0	9.22	0.79	9.30	1.82	9.32	1.42
8.40	17.2	8.81	0.79	9.12	1.44	9.18	1.41
8.00	20.0	8.98	1.03	9.06	1.91	9.10	1.90
5.92	17.4	8.82	1.75	9.02	1.11	9.10	1.34
5.90	18.4	8.92	1.05	9.13	1.90	9,28	1.45
5.91	17.0	8.90	0.63	9.20	1.34	9.30	1.41
6.40	18.8	9.29	0.55	9.30	0.98	9.31	1.22

type of Cd(OH)2	рн	PH Cd/ppm ^a		Cd/ppm ^D	
powder	8.7	1.0	8.5	0.485	
[" "	8.8	0.9	8.7	0.385	
11	8.8	1.1	8.8	0.425	
"	9.0	0.96	8.9	0.428	
freshly pptd	8.7	1.66	8.8	0.640	
11 11	8.6	2.12	8.6	0.785	
Ami			-1 1		

^aThese solutions were filtered through a Millipore HA filter. ^bThese solutions were filtered through a Millipore VC filter.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The Cd(OH)₂ was added to distilled water and the mixture was shaken intermittently for a week and then allowed to stand for about a week. A sample of the clear supernatant liquid was removed, filtered through glass paper and analyzed for cadmium content colorimetrically using diphenylthiocarbazone. Each value reported is the average of 3 replicate samples. Successive extractions were made by the addition of distilled water, shaking the mixture for 2 days, allowing the mixture to settle, and then taking samples for analysis.

SOURCE AND PURITY OF MATERIALS:

The distilled water was CO2-free. The Cd(OH) apparently was a commercially available product.

ESTIMATED ERROR:

No information is given about the reproducibility of any of the measurements or procedures.

REFERENCES: